
EEE492 - 25 Verification in the Software
Life Cycle

November 2008

Sylvain P. Leblanc 1

Verification in the
Lifecycle

EEE492A 2008
References:[HvV §13.2, 13.9]

Sylvain P. Leblanc
Royal Military College of Canada

Electrical and Computer Engineering
sylvain.leblanc@rmc.ca
tarpit.rmc.ca/leblanc

2

Outline

• Verification in each phase of development
• Requirements
• Design
• Implementation
• Maintenance

• Test Stages
• User Tests
• Unit Tests
• Integration Tests
• Stress Tests
• Acceptance Tests
• System Tests

EEE492 - 25 Verification in the Software
Life Cycle

November 2008

Sylvain P. Leblanc 2

3

Testing in the software lifecycle
System

requirements

Software
requirements

Analysis

Design

Testing

Coding

Maintenance

Imagine this process
laid out on a calendar.
Think as a software

manager. What is the
problem with this view

of testing?

4

Requirements & Verification
• Activities

• design a test strategy - a plan
• determine test requirements (resources, tools, …)
• prepare functional test cases

• Verify requirements against
• completeness - self-explanatory but difficult to

verify, user scenarios may help to identify omissions
• consistency - essentially a check that no

requirements contradict each other or any external
interface

• feasibility - risk analysis to determine cost effective-
ness against key factors (safety, speed, reliability,…)

• testability - requirements must be specific,
unambiguous and quantitative to be able to be tested

EEE492 - 25 Verification in the Software
Life Cycle

November 2008

Sylvain P. Leblanc 3

5

Design & Verification
• Activities

• check consistency between requirements and design
• prepare more detailed structural and functional tests
• verify the architecture and design

• Verify the architecture against
• change - maintainability and flexibility are measures

of how easily the design foundation may be changed

• Verify design against
• completeness, consistency, feasibility and testability

• similar to requirements verification
• modern tools may support verification through

executable designs

6

Implementation & Verification
• Activities

• check consistency between design and implementation
• generate structural and functional test data
• verify implementation; execute tests

• Verify implementation against
• the design (and ultimately the requirements)

• Verification may be
• static - code inspections and walkthroughs or
• dynamic - executable tests

• Test tools and automation are critical
• test generators, stubs, drivers, comparators (JUnit)

EEE492 - 25 Verification in the Software
Life Cycle

November 2008

Sylvain P. Leblanc 4

7

Maintenance & Verification
• Activities

• maintain the development tests and tools
• regression testing

• Verify changes against
• new or changed requirements
• a previously working system

• Well designed regression testing is necessary so
as to avoid a “retest-all approach”

• In reality maintenance of code begins during
development on any project
• therefore be ready to support maintenance verification

8

User Testing
• early testing of

prototype systems

• designed to
• validate User Interfaces
• elicit or improve understanding of requirements

• must occur early enough in the process that
the results can be incorporated into the product

or
often enough to properly steer iterative
developments (XP)

EEE492 - 25 Verification in the Software
Life Cycle

November 2008

Sylvain P. Leblanc 5

9

Unit Testing
• testing of an individual module,

class, or unit - based on the
module specification

• normally performed by the
developer responsible

• tests should include
• data flow across module interface
• local data structures and access to

global data structures
• selective coverage of execution paths
• error handling code
• boundary tests

• first and last elements, first and last iterations, etc.

Catalog_Item
attribute1
attribute2
method1
method2
method3

10

Integration Testing
• bottom-up

• test the “bottom” modules
using drivers to represent
higher modules

• collect modules from the
bottom up into “clusters”

• top-down
• test the “top” module using

stubs to represent lower modules
• as lower modules become

available, stubs are removed
• lower modules may be added

depth-first or breadth-first

UUT UUT

X test
drivers

UUT UUT

UUT

test
stubs

√

EEE492 - 25 Verification in the Software
Life Cycle

November 2008

Sylvain P. Leblanc 6

11

Stress Testing
• performance-under-

load tests
• 100 hits per second
• 50 simultaneous database

accesses
• release all real-time tasks

at once to observe scheduleability

• systems with load requirements must be tested
under load
• simulated load scenarios must be designed and

supported
• frequently requires significant test code and

equipment to adequately support

12

Stress Testing
• performance-under-

load tests
• 100 hits per second
• 50 database accesses

simultaneously
• release all real-time

tasks at once to observe
scheduleability

• systems with load requirements must be tested
under load
• simulated load scenarios must be designed and

supported
• frequently requires significant test code and

equipment to adequately support

EEE492 - 25 Verification in the Software
Life Cycle

November 2008

Sylvain P. Leblanc 7

13

Stress Testing
• performance-under-

load tests
• 100 hits per second
• 50 database accesses

simultaneously
• release all real-time

tasks at once to observe
scheduleability

• systems with load requirements must be tested
under load
• simulated load scenarios must be designed and

supported
• frequently requires significant test code and

equipment to adequately support

14

• complete when “the software performs in a
manner that can reasonably be expected by the
customer”
• who gets to decide what’s “reasonable”?

• acceptance tests demonstrate conformity with
requirements
• failures are recorded on deficiency lists and must

ultimately be addressed

• where requirements are unclear or the customer
base is broad, may use alpha and beta testing
• customers may be willing to use and report faults in

exchange for early access to capabilities

Acceptance Testing

EEE492 - 25 Verification in the Software
Life Cycle

November 2008

Sylvain P. Leblanc 8

15

Test Stages - System Testing
• software is only

one element of
the system.
• Also includes,

people, data,
procedures, documentation
and hardware

• ultimately, the entire
system must be tested
for effectiveness

16

Supplemental References

Roger S. Pressman. Software Engineering - A
Practitioner’s Approach 5th Edition, Chapter 18.
McGraw-Hill, 2001. ISBN 0-07-365578-3

EEE492 - 25 Verification in the Software
Life Cycle

November 2008

Sylvain P. Leblanc 9

Next Class:

Inspections and
Walkthroughs

