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Outline

 Verification in each phase of development
e Requirements
e Design
e Implementation
» Maintenance

e Test Stages
e User Tests
e Unit Tests
» Integration Tests
e Stress Tests
e Acceptance Tests
e System Tests
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Testing in the software lifecycle i

System
requirements

\ Software

requirements

\

Analysis \
\ Design \

Imagine this process \ Coding
laid out on a calendar. \ \
Think as a software ;
manager. What is the EEUITE \
problem with this view \ .
of testing? Maintenance
) o . &
Requirements & Verification i
e Activities

e design a test strategy - a plan
e determine test requirements (resources, tools, ...)
e prepare functional test cases

e Verify requirements against

e completeness - self-explanatory but difficult to
verify, user scenarios may help to identify omissions

e consistency - essentially a check that no
requirements contradict each other or any external
interface

» feasibility - risk analysis to determine cost effective-
ness against key factors (safety, speed, reliability,...)

e testability - requirements must be specific,
unambiguous and quantitative to be able to be tested
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Design & Verification i
e Activities

e check consistency between requirements and design
e prepare more detailed structural and functional tests
» verify the architecture and design
» Verify the architecture against
» change - maintainability and flexibility are measures
of how easily the design foundation may be changed
« Verify design against
e completeness, consistency, feasibility and testability
e similar to requirements verification
e modern tools may support verification through
executable designs
. o . @
Implementation & Verification %,

e Activities
e check consistency between design and implementation
e generate structural and functional test data
 verify implementation; execute tests

e Verify implementation against
e the design (and ultimately the requirements)

« Verification may be
e static - code inspections and walkthroughs or
e dynamic - executable tests

e Test tools and automation are critical
 test generators, stubs, drivers, comparators (JUnit)
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Maintenance & Verification

e Activities
e maintain the development tests and tools
» regression testing

» Verify changes against
* new or changed requirements
» a previously working system

e Well designed regression testing is necessary so
as to avoid a “retest-all approach”

e In reality maintenance of code begins during

development on any project
» therefore be ready to support maintenance verification

User Testing

- early testing of
prototype SyStemS Q Please, press OK or CAMCEL
to continue. ..

e designed to

» validate User Interfaces
e elicit or improve understanding of requirements

e must occur early enough in the process that
the results can be incorporated into the product
or
often enough to properly steer iterative
developments (XP)
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Unit Testing

e testing of an individual module,
class, or unit - based on the
module specification

e normally performed by the
developer responsible

e tests should include

e data flow across module interface
local data structures and access to
global data structures

error handling code
boundary tests

Catalog_Item

attributel
attribute2

methodl
method?2
method3

selective coverage of execution paths

« first and last elements, first and last iterations, etc.

Integration Testing

e bottom-up
 test the “bottom” modules
using drivers to represent
higher modules

X test

drivers

e collect modules from the
bottom up into “clusters”

uuT

uuT uuT

e top-down
* test the “top” module using
stubs to represent lower modules
» as lower modules become

uuT uuT

available, stubs are removed
e lower modules may be added

depth-first or breadth-first

1
I test /
stubs
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Stress Testing

e performance-under-

load tests

e 100 hits per second

e 50 simultaneous database
accesses

e release all real-time tasks
at once to observe scheduleability

e systems with load requirements must be tested

under load

e simulated load scenarios must be designed and
supported

e frequently requires significant test code and
equipment to adequately support
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Stress Testing
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. systems wit ents must be tested
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Stress Testing

e performance-under-

load tests

e 100 hits per second

e 50 database accesses
simultaneously

e release all real-time
tasks at once to observe
scheduleability

_AND YOU THINK YOU HAVE STRESS.

 systems witi Ioaslfdgezwents must be tested

EMOad scenarios must be designed and
supported
e frequently requires significant test code and
equipment to adequately support 13

Acceptance Testing

e complete when “the software performs in a
manner that can reasonably be expected by the

customer”
e who gets to decide what's “reasonable”?

e acceptance tests demonstrate conformity with
requirements
e failures are recorded on deficiency lists and must
ultimately be addressed

e where requirements are unclear or the customer
base is broad, may use alpha and beta testing

e customers may be willing to use and report faults in
exchange for early access to capabilities
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Test Stages - System Testing i

e software is only
one element of
the system.

 Also includes,
people, data,
procedures, documentation
and hardware

e ultimately, the entire
system must be tested
for effectiveness

&
Supplemental References i

Roger S. Pressman. Software Engineering - A
Practitioner’s Approach 5th Edition, Chapter 18.
McGraw-Hill, 2001. ISBN 0-07-365578-3
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Next Class:

Inspections and
Walkthroughs
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