EEE492 - 25 Verification in the Software

Life Cycle

November 2008

Verification in the
Lifecycle

EEE492A 2008
References:[HvV §13.2, 13.9]

G

[R

A i
AT PR e AN

Sylvain P. Leblanc
Royal Military College of Canada
Electrical and Computer Engineering
sylvain.leblanc@rmc.ca
tarpit.rmc.ca/leblanc

Outline

 Verification in each phase of development
e Requirements
e Design
e Implementation
» Maintenance

e Test Stages
e User Tests
e Unit Tests
» Integration Tests
e Stress Tests
e Acceptance Tests
e System Tests

Sylvain P. Leblanc

EEE492 - 25 Verification in the Software

Life Cycle

é
Testing in the software lifecycle i

System
requirements

\ Software

requirements

\

Analysis \
\ Design \

Imagine this process \ Coding
laid out on a calendar. \ \
Think as a software ;
manager. What is the EEUITE \
problem with this view \ .
of testing? Maintenance
) o . &
Requirements & Verification i
e Activities

e design a test strategy - a plan
e determine test requirements (resources, tools, ...)
e prepare functional test cases

e Verify requirements against

e completeness - self-explanatory but difficult to
verify, user scenarios may help to identify omissions

e consistency - essentially a check that no
requirements contradict each other or any external
interface

» feasibility - risk analysis to determine cost effective-
ness against key factors (safety, speed, reliability,...)

e testability - requirements must be specific,
unambiguous and quantitative to be able to be tested

4

Sylvain P. Leblanc

November 2008

EEE492 - 25 Verification in the Software

Life Cycle

i .] &
Design & Verification i
e Activities

e check consistency between requirements and design
e prepare more detailed structural and functional tests
» verify the architecture and design
» Verify the architecture against
» change - maintainability and flexibility are measures
of how easily the design foundation may be changed
« Verify design against
e completeness, consistency, feasibility and testability
e similar to requirements verification
e modern tools may support verification through
executable designs
. o . @
Implementation & Verification %,

e Activities
e check consistency between design and implementation
e generate structural and functional test data
 verify implementation; execute tests

e Verify implementation against
e the design (and ultimately the requirements)

« Verification may be
e static - code inspections and walkthroughs or
e dynamic - executable tests

e Test tools and automation are critical
 test generators, stubs, drivers, comparators (JUnit)

Sylvain P. Leblanc

November 2008

EEE492 - 25 Verification in the Software

Life Cycle

Maintenance & Verification

e Activities
e maintain the development tests and tools
» regression testing

» Verify changes against
* new or changed requirements
» a previously working system

e Well designed regression testing is necessary so
as to avoid a “retest-all approach”

e In reality maintenance of code begins during

development on any project
» therefore be ready to support maintenance verification

User Testing

- early testing of
prototype SyStemS Q Please, press OK or CAMCEL
to continue. ..

e designed to

» validate User Interfaces
e elicit or improve understanding of requirements

e must occur early enough in the process that
the results can be incorporated into the product
or
often enough to properly steer iterative
developments (XP)

Sylvain P. Leblanc

November 2008

EEE492 - 25 Verification in the Software
Life Cycle

Unit Testing

e testing of an individual module,
class, or unit - based on the
module specification

e normally performed by the
developer responsible

e tests should include

e data flow across module interface
local data structures and access to
global data structures

error handling code
boundary tests

Catalog_Item

attributel
attribute2

methodl
method?2
method3

selective coverage of execution paths

« first and last elements, first and last iterations, etc.

Integration Testing

e bottom-up
 test the “bottom” modules
using drivers to represent
higher modules

X test

drivers

e collect modules from the
bottom up into “clusters”

uuT

uuT uuT

e top-down
* test the “top” module using
stubs to represent lower modules
» as lower modules become

uuT uuT

available, stubs are removed
e lower modules may be added

depth-first or breadth-first

1
I test /
stubs

10

Sylvain P. Leblanc

November 2008

EEE492 - 25 Verification in the Software

Life Cycle

Stress Testing

e performance-under-

load tests

e 100 hits per second

e 50 simultaneous database
accesses

e release all real-time tasks
at once to observe scheduleability

e systems with load requirements must be tested

under load

e simulated load scenarios must be designed and
supported

e frequently requires significant test code and
equipment to adequately support

11

Stress Testing

e performance-under-

load tests

e 100 hits per second

e 50 database accesses
simultaneously

e release all real-time
tasks at once to observe
scheduleability

. systems wit ents must be tested

oad scenarios must be designed and
supported
» frequently requires significant test code and
equipment to adequately support 12

Sylvain P. Leblanc

November 2008

EEE492 - 25 Verification in the Software

Life Cycle

Stress Testing

e performance-under-

load tests

e 100 hits per second

e 50 database accesses
simultaneously

e release all real-time
tasks at once to observe
scheduleability

_AND YOU THINK YOU HAVE STRESS.

 systems witi Ioaslfdgezwents must be tested

EMOad scenarios must be designed and
supported
e frequently requires significant test code and
equipment to adequately support 13

Acceptance Testing

e complete when “the software performs in a
manner that can reasonably be expected by the

customer”
e who gets to decide what's “reasonable”?

e acceptance tests demonstrate conformity with
requirements
e failures are recorded on deficiency lists and must
ultimately be addressed

e where requirements are unclear or the customer
base is broad, may use alpha and beta testing

e customers may be willing to use and report faults in
exchange for early access to capabilities

14

Sylvain P. Leblanc

November 2008

EEE492 - 25 Verification in the Software

Life Cycle

Test Stages - System Testing i

e software is only
one element of
the system.

 Also includes,
people, data,
procedures, documentation
and hardware

e ultimately, the entire
system must be tested
for effectiveness

&
Supplemental References i

Roger S. Pressman. Software Engineering - A
Practitioner’s Approach 5th Edition, Chapter 18.
McGraw-Hill, 2001. ISBN 0-07-365578-3

16

Sylvain P. Leblanc

November 2008

EEE492 - 25 Verification in the Software November 2008
Life Cycle

Next Class:

Inspections and
Walkthroughs

Sylvain P. Leblanc 9

